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Ø Background

Figure 1: Examples from previous research*.

*: SPADE: Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-adaptive normalization, 2019.

Figure 9: Our model attains multimodal synthesis capability when trained with the image encoder. During deployment,
by using different random noise, our model synthesizes outputs with diverse appearances but all having the same semantic
layouts depicted in the input mask. For reference, the ground truth image is shown inside the input segmentation mask.

Variations of SPADE generator. Table 4 reports the per-
formance of several variations of our generator. First, we
compare two types of input to the generator where one is the
random noise while the other is the downsampled segmen-
tation map. We find that both of the variants render similar
performance and conclude that the modulation by SPADE
alone provides sufficient signal about the input mask. Sec-
ond, we vary the type of parameter-free normalization lay-
ers before applying the modulation parameters. We observe
that the SPADE works reliably across different normaliza-
tion methods. Next, we vary the convolutional kernel size
acting on the label map, and find that kernel size of 1x1
hurts performance, likely because it prohibits utilizing the
context of the label. Lastly, we modify the capacity of the
generator by changing the number of convolutional filters.
We present more variations and ablations in the appendix.

Multi-modal synthesis. In Figure 9, we show the mul-
timodal image synthesis results on the Flickr Landscape
dataset. For the same input segmentation mask, we sam-
ple different noise inputs to achieve different outputs. More
results are included in the appendix.

Semantic manipulation and guided image synthesis. In
Figure 1, we show an application where a user draws dif-

ferent segmentation masks, and our model renders the cor-
responding landscape images. Moreover, our model allows
users to choose an external style image to control the global
appearances of the output image. We achieve it by replac-
ing the input noise with the embedding vector of the style
image computed by the image encoder.

5. Conclusion
We have proposed the spatially-adaptive normalization,

which utilizes the input semantic layout while performing
the affine transformation in the normalization layers. The
proposed normalization leads to the first semantic image
synthesis model that can produce photorealistic outputs for
diverse scenes including indoor, outdoor, landscape, and
street scenes. We further demonstrate its application for
multi-modal synthesis and guided image synthesis.
Acknowledgments. We thank Alexei A. Efros, Bryan
Catanzaro, Andrew Tao, and Jan Kautz for insightful ad-
vice. We thank Chris Hebert, Gavriil Klimov, and Brad
Nemire for their help in constructing the demo apps. Tae-
sung Park contributed to the work during his internship at
NVIDIA. His Ph.D. is supported by a Samsung Scholarship.
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• Previous approaches on the task of Semantic Image Synthesis
§ Use detailed and precise semantic layouts, while the quality of the results is 

highly dependent on the accuracy of the input layouts. 
§ However, it is quite challenging for real users to create highly detailed and 

accurate semantic layouts in practice. 
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Ø Our Goal 
• Proposed approach → Synthesize images from sparse and intuitive semantic layouts. 

CloudGrass Mountain River

Input

Output

Rock Sky Dirt

Figure 2: Teaser for our proposed method.
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Ø Overview
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Figure 3: Structure of Proposed Framework.

1. A random masking process that tries to simulate actual user input, improving 
generation quality in practical applications during the inference stage.
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Ø Overview
2. A diffusion-based generator* that we found to be most suitable for our masking 

process while also surpassing previous GAN-based models in generation quality.
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Figure 3: Structure of Proposed Framework.
*: SDM: Wang, W., Bao, J., Zhou, W., Chen, D., Chen, D., Yuan, L. and Li, H.: Semantic Image Synthesis via Diffusion Models (2022).
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Ø Overview
3. A progressive model distillation* process that significantly reduces diffusion steps 

during the inference stage, making our framework interactive and broadly applicable. 

*: Salimans, T. and Ho, J.: Progressive Distillation for Fast Sampling of Diffusion Models (2022). 
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Ø Random Masking Strategy 
• We propose to simulate human-authored semantic layouts during the training using a 

well-designed random masking strategy called Class-wise Random Patterns that
§ generates random patterns to mask a certain percent of the semantic layouts.
§ generates different masks for each label class to avoid biased learning.

Before Masking After Masking

Figure 4: Example of our random masking strategy, different masks are generated for each label class.
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Ø Baseline Models

o OASIS: Sushko, V., Scho ̈nfeld, E., Zhang, D., Gall, J., Schiele, B. and Khoreva, A.: You only need adversarial supervision for semantic image synthesis. (2020). 
o SPADE: Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-adaptive normalization, 2019.
o SEAN: Zhu, P., Abdal, R., Qin, Y. and Wonka, P.: SEAN: Image Synthesis with Semantic Region-Adaptive Normalization. (2020).

• We chose three existing models as our baseline models:

§ Semantic image synthesis with spatially-adaptive normalization. (SPADE).

§ You Only Need Adversarial Supervision for Semantic Image Synthesis. (OASIS)

§ Image Synthesis with Semantic Region-Adaptive Normalization. (SEAN)
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Ø Quantitative Comparison 
• Fréchet Inception Distance (FID) 

§ Fréchet distance between two multidimensional Gaussian distributions, which 
captures the perceptual similarity of generated images to real ones. 

§ The lower, the better.
§ As shown in Table 1, our approach outperforms baseline models in terms of 

generation quality. 

Table 1: Quantitative comparison with baseline models.

10 Y. Huang et al.

Input SPADE SPADE SEAN SEAN OASIS OASIS Ours Ours GT
w/ RM w/o RM w/ RM w/o RM w/ RM w/o RM w/ RM w/o RM

Fig. 5. Examples from ablation study. We compare our approach with existing
methods for generating images conditioned on unmasked dense semantic layouts. All
models are trained under two di↵erent settings: with or without our random mask-
ing (RM) process, and ours trained without RM is equivalent to the original SDM
model.

Table 2. Quantitative evaluation. We compare with existing approaches for con-
ditional image generation using the FID metric.

SPADE SEAN OASIS ours

FID# 57.82 148.32 44.47 38.37

4.3 Quantitative Comparison

We use the Fréchet Inception Distance (FID) [9] as our primary evaluation
metric, which captures the perceptual similarity of generated images with real
ones. We calculated FID between the real images and generated images from
random masked semantic layouts. We use a total of 4,000 validation semantic
layouts as input, which are randomly masked four times based on the validation
set described in Sec. 4.1. As shown in Table 2, we can see that our approach
outperforms existing approaches in terms of generating quality.

4.4 Visual Quality Comparison

We provide a qualitative comparison of generation results from both random
mask input and actual human input, against our baseline models, as shown in
Fig. 4. It can be observed that the results of SEAN fail to generate meaning-
ful outcomes, as it generates an average style derived from the training data
based on the paired label maps. However, due to the random masking during
the training stage, this approach fails to generate satisfactory results. A similar
issue is observed for OASIS, which tends to generate obviously di↵erent textures
in masked areas due to its semantically-aware discriminator. Although SPADE
seems una↵ected by the random masks, the generation quality is limited. In con-
trast, our approach automatically completes the missing areas from the input
label while preserving a high-quality generation.



Figure 5: Qualitative comparison of generation results from both random mask input and actual human input.
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Ø Qualitative ComparisonDi↵usion-based Semantic Image Synthesis from Sparse Layouts 9
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Fig. 4. Qualitative comparison. We compare our approach against existing ap-
proaches in both random mask input using our random masking strategy and actual
human input.
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Fig. 4. Qualitative comparison. We compare our approach against existing ap-
proaches in both random mask input using our random masking strategy and actual
human input.
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Ø Example of Interactive Editing
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Ø Our Contribution
• Diffusion-based Semantic Image Synthesis from Sparse Layouts. 

1. A well-designed masking strategy that simulates human-authored sparse 
layouts, avoiding the challenging task of producing detailed semantic layouts.

2. A diffusion-based generator tailored to our masking design, which 
outperforms existing GAN-based models in terms of generation quality.

3. An additional model distillation process makes our framework more 
interactive and applicable for practical use. 



Thank You For Listening!
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