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Abstract. We present an efficient framework that utilizes diffusion mod-
els to generate landscape images from sparse semantic layouts. Previous
approaches use dense semantic label maps to generate images, where the
quality of the results is highly dependent on the accuracy of the input
semantic layouts. However, it is not trivial to create detailed and ac-
curate semantic layouts in practice. To address this challenge, we care-
fully design a random masking process that effectively simulates real
user input during the model training phase, making it more practical
for real-world applications. Our framework leverages the Semantic Dif-
fusion Model (SDM) as a generator to create full landscape images from
sparse label maps, which are created randomly during the random mask-
ing process. Missing semantic information is complemented based on the
learned image structure. Furthermore, we achieve comparable inference
speed to GAN-based models through a model distillation process while
preserving the generation quality. After training with the well-designed
random masking process, our proposed framework is able to generate
high-quality landscape images with sparse and intuitive inputs, which
is useful for practical applications. Experiments show that our proposed
method outperforms existing approaches both quantitatively and quali-
tatively.

Keywords: Semantic Image Synthesis · Sparse Input · Diffusion Models.

1 Introduction

Semantic image synthesis refers to a subfield of image synthesis, which aims
to generate new images conditioned on semantic layouts that contains required
features and structural information of the image. It can be utilized for a variety of
applications, including image editing, content creation, and artificial intelligence
art. The earliest attempt at this task goes back at least to image analogies [8],
where they automatically learned filters from training data based on a simplistic
multi-scale autoregression.
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2 Y. Huang et al.

CloudGrass Mountain River

Input

Output

Rock Sky Dirt

Fig. 1. Our approach can synthesize landscape images from more sparse and intuitive
semantic layouts rather than detailed and precise layouts while maintaining the same
level of generation quality.

With the recent success of generative adversarial networks (GANs [7]), data-
driven generation approaches have become a dominant trend. Several GAN-
based methods have achieved good results by directly learning image-to-image
mapping, such as pix2pixGAN, which first established a common framework
for learning the mapping of paired data and successfully generated realistic im-
ages. Furthermore, Park et al. [16] proposed SPatially-ADaptive DEnormaliza-
tion (SPADE), which outperforms previous methods on the task of semantic
image synthesis. Subsequent models, including SEAN [32], SMIS [33], and OA-
SIS [28], extend the SPADE model in different aspects. Recently, Wang et al. [30]
developed a semantic image synthesis approach based on Denoising Diffusion
Probabilistic Models (DDPMs) [11]. This method integrates SPADE into the
residual blocks of the decoder networks to better leverage the information in
the input semantic mask, leading to improvements in the overall quality of the
generated images.

Existing approaches for semantic image synthesis have focused on process-
ing a comprehensive semantic layout that captures the entire scene, which is
equivalent to the reverse task of semantic segmentation. However, in real-world
applications that rely on human-authored layouts as input, creating detailed and
precise layouts that accurately represent real-world scenes can be quite challeng-
ing. To address this issue, we carefully design a random masking process that
enables the simulation to mimic actual user input, thereby making the inputs
better suited for use in real-world settings.

Our generator is constructed based on the Semantic Diffusion Model (SDM) [30].
It feeds noisy images to the encoder of the U-Net structure, similar to other
diffusion-based image generation methods. Additionally, the semantic layouts
are injected into the SPADE [16] layers of the decoder. By progressively refining
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the generated results, it achieves state-of-the-art performance on the task of se-
mantic image synthesis. Moreover, we find that the methodology of diffusion is
most appropriate for our masking design and achieves the best results for more
sparse and intuitive inputs. We also accomplished comparable inference speed to
GAN-based models through a model distillation process while preserving gener-
ation quality.

After training with the well-designed random masking process, our proposed
framework can generate high-quality landscape images with sparse and intuitive
inputs, which enables the practical application of semantic image synthesis in
scenarios that require human-authored layouts. We evaluate our approach quan-
titatively with both automatic metrics and a perceptual user study, in addition to
qualitative results. Results demonstrate that our approach outperforms existing
approaches in all metrics.

This study presents the following contributions:
• A well-designed masking strategy that simulates human-authored sparse lay-
outs, improving the practical application of semantic image synthesis.

• A diffusion-based generator with a model distillation process that enables fast
sampling while preserving better generation quality compared to GAN-based
models.

• In-depth evaluation of our method with both qualitative and quantitative
comparisons with existing approaches.

2 Related Work

2.1 Semantic Image Synthesis

Semantic image synthesis focuses on generating new images conditioned on se-
mantic image maps and is mainly dominated by GAN-based [7] approaches in
recent years. For example, the pix2pixGAN [12] established a common frame-
work for learning the mapping of paired data and successfully generated realistic
images. This approach has been extended in the following research [3, 17, 29].
Furthermore, Park et al. [16] proposed the SPatially-ADaptive DEnormalization
(SPADE) approach, which outperforms previous methods in generating photo-
realistic images conditioned on semantic layouts. Various improvements have
been made to the SPADE architecture in different aspects, such as SMIS [33],
which produces semantically multimodal images by replacing all regular convo-
lution layers in the generator with group convolutions, and SEAN [32], which
uses style input images to create spatially varying normalization parameters per
semantic region. Additionally, OASIS [28] surpasses SPADE in diversity while
maintaining similar quality by redesigning the discriminator. Besides GAN-based
models, Chen et al. [2] proposed the Cascaded Refinement Network (CRN) for
high-resolution semantic image synthesis. It has been extended by subsequent
methods [14, 18]. However, these approaches still underperform compared to
state-of-the-art GAN-based models. Recently, with the advent of diffusion mod-
els, SDM [30] has incorporated SPADE with Denoising Diffusion Probabilistic



4 Y. Huang et al.

Models (DDPMs), enabling better generation fidelity and diversity simultane-
ously. We construct our generator based on SDM, which outperforms GAN-based
methods in terms of generation quality and is most appropriate for our masking
design.

2.2 Sparse and Intuitive User Input on Image Synthesis

In real-world computer graphics applications, users often prefer to provide in-
tuitive inputs rather than comprehensive ones, as producing the latter can be
highly challenging. Intuitive inputs may include text, sketches, scene graphs, and
semantic layouts for image synthesis tasks. For instance, text-to-image synthesis
models [19–21, 31] generate photorealistic images from text descriptions, while
other works focus on generating images from edges and sketches [5, 6, 12] and
scene graphs [1,13]. These inputs are easy to create but lack precise control and
struggle to produce high-quality results due to the difficulty of training. Among
the many types of inputs, we believe that semantic layouts offer the most control
and interactivity while providing plausible results, as the semantic labels provide
precise shape and content. However, creating a semantic layout that perfectly
matches the inputs to the training set is always challenging. In contrast to previ-
ous methods that require users to reproduce detailed semantic label maps, in this
paper, we propose simulating human-authored semantic layouts during training
using a well-designed random masking strategy. Notably, our proposed method
still provides precise control if the input semantic layout is dense enough, unlike
sketches-based models and scene graphs-based models that only accept sparse
inputs, as discussed in Section 3.1.

2.3 Diffusion Probabilistic Models

Diffusion Models (DMs) can be defined as Markov chains trained using varia-
tional inference that gradually transition from random noise to the target distri-
bution through a series of diffusion steps [26]. Ho et al. [11] proposed Denoising
Diffusion Probabilistic Models (DDPMs), establishing an explicit connection be-
tween diffusion models and denoising score matching, which leads to improved
image generation quality. Subsequently, many studies [23, 27] have explored the
potential of DMs in various aspects, such as unconditional image synthesis [4],
image-to-image translation [22,25], and text-to-image generation [19,21]. These
studies demonstrate the superiority of DMs over GAN-based models in terms
of both quality and stability. Recently, Wang et al. [30] developed a semantic
image synthesis approach that integrates SPADE [16] into the residual blocks of
the decoder networks to better leverage the information in the input semantic
mask, leading to improvements in overall quality on the task of semantic image
synthesis. In this paper, we utilize a network structure similar to the SDM model
and modify it to accommodate the requirements of progressive distillation [24].
This modification results in a significant boost in inference speed, making the
approach more practical for real-world applications.
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Fig. 2. Our proposed framework. The semantic layout is processed by our random
masking process to simulate the actual user input and then passed to our generator,
which learns to predict a landscape image from random noise through the diffusion
process. During the inference phase, after the model distillation process, a distilled
generator can quickly sample an output landscape corresponding to the sparser user
input.

3 Proposed Framework

Our proposed framework consists of three components: a) a random masking
process that simulates actual user input, improving generation quality in practi-
cal applications; b) a diffusion-based generator that we found to be most suitable
for our masking design while also surpassing previous GAN-based models in both
fidelity and diversity; and c) a progressive model distillation process that signifi-
cantly reduces diffusion steps during the inference stage, making our framework
interactive and broadly applicable.

During training, a detailed semantic layout is processed by our random mask-
ing process for each iteration to simulate user input. The masked layout is then
passed to our generator, which learns to predict a landscape image from random
noise through the diffusion process while conditioning on the masked layout. In
the inference phase, a distilled generator can quickly sample an output landscape
image from random noise, corresponding to the sparser input semantic layouts
provided by the users. An overview of the model is depicted in Figure 2.

3.1 Masking Strategy

We try to simulate user input in different strategies as follows:
• Random Blocks generate multiple coordinates, with random width and
height.
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Fig. 3. Comparisons of different strategies of random masking.

• Random Lines generate multiple paired coordinates as the start and end
points of a stroke line, then generate random middle points. Finally, draw
lines with random stroke width.

• Random Patterns generate a low-resolution random pattern to meet an av-
erage percentage of binary masks. For example, we set the average masking
percentage of our generated patterns from 15% ∼ 75%, which is also random-
ized in every iteration.

• Class-wise Random Patterns are similar to the previous one but generate
a different mask for each class at the same percentage to avoid disregarding
classes that are smaller than the average size, such as trees and rocks. These
smaller-sized classes are more likely to be completed masked if we use an
overall mask, which may lead to biased learning. Examples of different random
masking strategies are shown in Fig. 3.

Based on our experiments, we find that class-wise random patterns achieve the
most appropriate simulation for actual user inputs. Thus, we adopt this masking
strategy in the following experiments for our proposed model and baseline mod-
els. Additionally, to improve performance when the input semantic is dense, we
set a random 15% of the input semantic to be left intact, enhancing the stability
of the training and providing more precise control over the generated images. For
a fair comparison, we apply the same settings during the training of all baseline
models.

3.2 Diffusion-based Generator

We use the same network architecture as Semantic Diffusion Model [30], which
builds upon DDPMs [11]. This architecture features a U-Net structure compris-
ing an encoder and a decoder. It is specifically designed for the diffusion pro-
cess, incorporating attention blocks, skip-connections, and a timestep embedding
module. Most importantly, in contrast to previous models that feed both input
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Table 1. Evaluation of Model Distillation (MD). We evaluate the models be-
fore and after model distillation in different scales. Notably, we substantially increase
inference speed to 64 times while maintaining a consistent FID metric.

Diffusion
Steps

Inference
Time (s)

FID↓

Original 1024 183.84 38.37
MD×16 64 10.27 39.60
MD×64 16 2.49 41.94

semantic layouts and random noise into the encoder, the SDM injects seman-
tic label maps into the decoder to condition the semantic information. This is
achieved by introducing SPADE (SPatially-ADaptive DEnormalization) [16], a
highly effective normalization technique for the task of semantic image synthesis,
into the decoder part of the networks.

Our generator has been modified in two aspects that have been proven to be
more effective for the progressive distillation [24] process, which we conduct after
the training. Firstly, we adopt a cosine noise schedule where αt = cos(0.5πt) and
σ2

t = 1− α2

t similar to that introduced by improved DDPMs [15]. Furthermore,
our generator is modified to predict v = αtϵ−σtx instead of a random noise ϵ that
is sampled from the standard Gaussian distribution, where x ∼ p(x) denotes the
input image and t ∈ [0, T ] indicates timestep. We set T = 1024 in our proposed
framework for better alignment during the distillation.
Training Objective. Given a sample image x, a noisy sample x̃ is produced as
follows:

x̃ =
√
αtx +

√
1− αtv (1)

Our objective function during the training includes a simple mean-squared
error loss Lsimple to predict v described above, which can be defined as:

Lsimple = Ex,v,t

[
∥v − vθ(

√
αtx +

√
1− αtv, l, t)∥2

]
(2)

, where l indicates the input semantic layout.

3.3 Model Distillation

One of the main limitations of diffusion-based models is the extremely slow sam-
pling process, which requires simulating a Markov chain for numerous steps to
generate a sample. To address this concern, we apply progressive distillation [24]
to our proposed model. We briefly review the concept of progressive distillation,
which is quite simple and straightforward. Assume we have a teacher model,
which is the model obtained after the main training. We establish a student
model initially copied from the teacher model and attempt to learn one student
diffusion step to match two teacher diffusion steps. After the first distillation
training, we obtain a student model that takes T/2 sampling steps to replace
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the original teacher model that required T sampling steps. This process can be
conducted repeatedly until the final model only requires a few steps to generate
a sample of similar quality to the original one.

As mentioned in Sec. 3.2, our generator is modified to meet the necessary
requirements discovered by the authors of the progressive distillation, enabling
it to accelerate the sampling process significantly while still preserving plausible
generation quality. A brief evaluation of our distillation process in terms of gen-
eration quality and inference time cost are shown in Table 1. In addition to the
distillation loss used in the original progressive distillation paper, we incorporate
an additional simple loss, as defined in Eq.2, to evaluate how well the student
model matches the initial training. This strategy is widely used in distillation
and was first introduced by Hinton et al. [10].

4 Results

We evaluate our approach and compare it with other methods both qualitatively
and quantitatively.

4.1 Experiments Setup

We adopt this masking strategy in the following experiments for our proposed
model and baseline models.

Datasets.We conduct experiments on Flickr Landscapes. We first collect 50,000
landscape photos that include various outdoor scenes from Flickr. We then re-
move 19,000 samples according to their generated label maps if they have irrele-
vant labels, such as people or animals. We are left with 31,000 images, of which
1,000 are left as a validation set.

Baselines. We chose three existing models as baselines for semantic image syn-
thesis: the SPADE [16], the SEAN [32] model, and the OASIS [28] model. All of
the baseline models are trained with the implementations provided by the au-
thors. In the inference phase, we note that the SEAN model requires a style code
as input, which we pre-compute from the mean style codes for all the training
data. It is important to note that the same masking process is applied to all
baseline models and our proposed model, ensuring a fair comparison.

4.2 Implementation Details

We train all networks from scratch. Specifically, we set the learning rate to 0.0001
in the first 600,000 iterations, which is then reduced to 0.00002 for the subsequent
200,000 iterations. To better facilitate the progressive distillation process, we set
the diffusion steps to 1024 instead of the original 1000 steps. We adopt a cosine
scheduler instead of a linear one for the same reason. The image size is set to be
256× 256 pixels in all training.
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Fig. 4. Qualitative comparison. We compare our approach against existing ap-
proaches in both random mask input using our random masking strategy and actual
human input.
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Input SPADE SPADE SEAN SEAN OASIS OASIS Ours Ours GT
w/ RM w/o RM w/ RM w/o RM w/ RM w/o RM w/ RM w/o RM

Fig. 5. Examples from ablation study. We compare our approach with existing
methods for generating images conditioned on unmasked dense semantic layouts. All
models are trained under two different settings: with or without our random mask-
ing (RM) process, and ours trained without RM is equivalent to the original SDM
model.

Table 2. Quantitative evaluation. We compare with existing approaches for con-
ditional image generation using the FID metric.

SPADE SEAN OASIS ours

FID↓ 57.82 148.32 44.47 38.37

4.3 Quantitative Comparison

We use the Fréchet Inception Distance (FID) [9] as our primary evaluation
metric, which captures the perceptual similarity of generated images with real
ones. We calculated FID between the real images and generated images from
random masked semantic layouts. We use a total of 4,000 validation semantic
layouts as input, which are randomly masked four times based on the validation
set described in Sec. 4.1. As shown in Table 2, we can see that our approach
outperforms existing approaches in terms of generating quality.

4.4 Visual Quality Comparison

We provide a qualitative comparison of generation results from both random
mask input and actual human input, against our baseline models, as shown in
Fig. 4. It can be observed that the results of SEAN fail to generate meaning-
ful outcomes, as it generates an average style derived from the training data
based on the paired label maps. However, due to the random masking during
the training stage, this approach fails to generate satisfactory results. A similar
issue is observed for OASIS, which tends to generate obviously different textures
in masked areas due to its semantically-aware discriminator. Although SPADE
seems unaffected by the random masks, the generation quality is limited. In con-
trast, our approach automatically completes the missing areas from the input
label while preserving a high-quality generation.
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Table 3. Perceptual user study results. The numbers indicate the percentage of
users that prefer our method with respect to existing approaches.

vs. SPADE OASIS Real

Ours 73.42% 65.22% 24.56%

Table 4. Abalation Study. We compare our approach with existing methods for gen-
erating images conditioned on unmasked dense semantic layouts. All models are trained
under two different settings: with or without our random masking (RM) process, and
ours trained without RM is equivalent to the original SDM model.

Method trained w/
RM

FID↓ Increase↓

SPADE [16] ✗ 38.70
✓ 55.49 43.39%

SEAN [32] ✗ 143.20
✓ 152.86 6.75%

OASIS [28] ✗ 32.31
✓ 40.46 25.22%

ours ✗ 32.67
✓ 36.41 11.45%

4.5 Perceptual User Study

We evaluate our method with a perceptual user study conducted with 10 partic-
ipants. We use all 4,000 generated images from each approach and their paired
real images, which are the same settings used in the quantitative comparisons.
In each round of the study, two images are shown to the user, both randomly se-
lected from different approaches or real images. Participants are asked to choose
which image appears more realistic for a total of 500 rounds per user. As shown
in Table 3, our approach is preferred over existing approaches. Furthermore,
when compared against real images, our approach is considered better 24.56%
of the time, consistent with the quantitative comparison results.

4.6 Ablation Study

We also conduct an ablation study to verify the effectiveness of our masking
design, as shown in Table 4 and Fig. 5. All models are trained under two different
settings: with or without our random masking process. During the inference
phase, only complete semantic layouts are used as input to generate results for
evaluation. We are able to evaluate how it affects generation quality by observing
the increase in FID when utilizing our random masking strategy. Notably, our
proposed model is minimally affected by the masking process, indicating its
robustness and effectiveness in handling masked inputs.
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(a) Input (b) Output

Fig. 6. Generation conditioned on unnatural inputs. When provided inputs are
unnatural, such as clouds beneath mountains on the left or 90 degree rotations, the
model might face difficulty in producing results as the input is significantly different
from anything seen during training.

4.7 Limitations and Discussion

Although our framework can generate high-quality landscape images from sparse
and intuitive semantic label maps, it comes with several constraints due to the
data-driven approach. Specifically, the application is limited to known labels,
and new data must be acquired to extend the model to new labels, such as
animals. Furthermore, the model learns a mapping from realistic semantic maps
to artwork images and can fail if the input semantic maps diverge significantly
from the training data, as shown in Fig. 6.

5 Conclusion

We have presented a novel framework for generating landscape images from
sparse semantic layouts. Our approach consists of a well-designed masking strat-
egy that simulates actual user input, thereby avoiding the challenging task of pro-
ducing detailed semantic layouts and improving generation quality in real-world
applications. We employ a diffusion-based generator tailored to our masking de-
sign, which outperforms existing models in terms of both fidelity and diversity
Furthermore, an additional model distillation process makes our framework more
interactive and applicable for practical use.
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